
.

“ “

CIRCULATIONCOPY
$iJBJECT TO RECALL

IN TWO WEEKS UCRL- 84102
PREPRINT

-.
,

GEARS: A Package for the Solution of Sparse,
Stiff Ordinary Differential Equations

Andrew H. Sherman
Department of Computer Science

University of Toronto
Toronto, Ontario

Alan C. Hindmarsh
Mathematics and Statistics Section
Lawrence Livermore Laboratory

Livermore, CA 94550

This paper was prepared for presentation at the
SIAM International Conference on Electric Power
Problems: The Mathematical Challenge,
March 18–20, 1980, Seattle.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

GEARS: A Package for the Solution of Sparse,

Stiff Ordinary Differential Equations

Andrew H. Shermanl and Alan C. Hindmarsh2

AB S TRA C T

This paper describes GEARS, a package of Fortran subroutines

designed to solve stiff systems of ordinary differential equations

of the form dy/dt = f(y,t) where the Jacobian matrices J = 3f/~y

are large and sparse. The integrator is based on the stiffly stable

methods due to Gear, and this leads to a sparse system of nonlinear

equations at each time step. These are solved with a modified

Newton iteration, using one of two separate sparse matrix packages

to solve the sparse linear equations that arise. In this paper

we describe the package in some detail, discuss a number of issues

that affected the design of the package, and present a numerical

example to illustrate the effectiveness of the package.

“Work performed under the auspices of the
U.S. Department of Energy by the Lawrence
Livermore Laboratory under contract number
W-7405 -ENG-48.”

.
.

. . .
.

•1
1
Department of Computer Science, University of Toronto, Toronto,
Ontario, M5S 1A7, Canada.

2
Mathematics and Statistics Section, Lawrence Livermore Laboratory,

Livermore, CA 94550.

. .

(

.

.

.. .
-.

. .*

GEARS: A Package for the Solution of
Sparse Stiff Ordinary Differential Equations

.*
c

*

1. Introduction

The mathematical modeling of electric power problems (among others)

often leads to initial value problems for systems of ordinary differential

equations (ODEIS) in time, which can be put in the abstract form

+ E dy/dt = f(y,t), Y(to) = yO (given). (1)

Here y and f are vectors of length N, and N may be quite large (thousands)

for realistic applications. Often these ODE problems are stiff, and

as a result involve the NXN Jacobian matrix

J : J(y,t) = ~f/~y

in their solutions. Stiffness occurs when one or

A of J are such that the associated time constant

(2)

more of the eigenvalues

T ~ -1/Re(A) is positive

and very small compared to the time span of interest. (Since the A’s can

vary with y and t in general, one has to qualify this by stipulating that,

for a given particular solution, some T is small for a significant part

of the total time interval beyond any rapid transients that occur in the

solution.) ‘Failure to take stiffness into account can result in numerical

methods that require time steps on the order of this smallest T, while the

time scale of the solution curves is much longer.

One Fortran software package that has become widely used for both

stiff and nonstiff problems generally is the GEAR package [1]. When used

for stiff problems of the form (l), it uses a variable-order method

(Gear’smethod) based on the backward differentiation formulas (BDFfS),

Yn = ? aiyn-~+ ‘B*i’nS
i=l

(3)

●

✎ of order q, 1 ~ q ~ 5. Here yn is the computed approximation to Y(tn),
.

~n denotes f(yn,tn), h is a step size (h = tk-tk-l), and the airs and f30

● ✎✌ are constants depending only on q. While this formula assumes a fixed h,.
GEAR varies both q and h, with changes in h handled by interpolating on the

given t mesh to get data on the new t mesh.

-2-

Since 60 # O, formula (3) is implicit, and each step requires the

solution of an algebraic system (generally nonlinear) of the form

Yn = hbof(yn,tn) + a .
n (4)

*.

Stiffness is manifested in large elements of af/3y, and this rules out the
.

classical fixed point or functional iteration on (4) as an efficient means .-,
.

of solution.

the form

PAy(m)

Instead, a modified Newton iteration is used. This takes

~p[y(m+l)-y(m)] =
an+hf30f(y$),tn)-y~), (5)

n n

where P is a matrix satisfying

PI= - h(30J (I=NxN identity). (6)

‘0) (prediction) is obtained from an explicit formulaThe initial guess yn
(m)

analogous to (3), and the corrector iterates y are computed until an
n

appropriate convergence criterion is met.

When implementing (5) and (6), GEAR assumes that J is a full (dense)

NXN matrix. It is this feature that limits GEAR to small or modest-sized

problms and has motivated the development of variant packages capable of

handling larger problemswith reasonable efficiency. GEARB [2] is one such

variant that is intended for the case in which J is large and banded. The

program GEARS described in this paper is a more recent variant that allows

for an arbitrary sparseness structure in J.

The importance of the variants of GEAR is due to the fact that many

applications lead

sparse: typically

few components yj

in time-dependent

naturally to systems in which the Jacobian matrix is quite

the i-th component ~i of $ = f(y,t) depends on relatively

of y. This occurs, for example, in network simulation and

partial differential equations treated by the method of

lines (i.e., finite differencing in space, giving ODE’s in time t). For such . -“.
problems, N may be so large that storing or computing with the full NxN matrix

J (or P) (or even its band) is out of the question, even though the number of ..:

nonzero elements of J (and hence P) may be quite manageable. This situation

calls for the use of general sparse matrix techniques, in conjunction with the

general time integration technique represented by GEAR. The GEARS package is

the result of such a combination, using the Yale Sparse Matrix Package (YSMP)

[3,4].

-3-

.-
●

d

●
✌✎

✎

s.,
.

By way of historical background, a version of GEARS has existed

since 1975 [5]. This made use of the version of YSMP that existed at

that time [6]. However, further development of YSMP since then made it

necessary to heavily revise GEARS. Moreover, many features and options

have been included in the present version to make its use as simple as

possible for a typical user with only minimal background in sparse matrix

techniques. Some of these are discussed later in this paper.

2. Overview of GEAR/GEARS

Both GEAR and GEARS (and other related ODE solvers) share a modular

structure which makes the development of variants fairly straightforward.

In its simplest form, this structure is shown in Figure 1. The driver handles

user communication and the time-stepping process, while the single-step

routine handles the taking of a step, including step and order selection,

and other aspects which are independent of the assumptions about the

structure of J. Matrix-related matters are handled by separate routines

called by the above routines, as shown. To obtain GEARS, these latter

routines were replaced in GEAR by routines that take account of Jacobian

structure, with relatively little change to the other routines in GEAR.

!Driver routine I

m
Figure 1. Modular structure of GEAR and GEARS

-4-

From the user’s point of view, GEARS resembles GEAR except for a

few parts of the user interface associated with sparse matrices. For both

packages, the user must supply a subroutine DIFFUN that computes the func-

tion f(y,t) in (l). As an option, he may also supply a routine that computes

elements of the Jacobian J = ~f/Zlyin closed form, but if this is not feas-

ible, the package will compute J by difference quotients. The user then

writes a calling program which calls the driver and supplies the initial

conditions, an error tolerance, a method flag, and a value of t at which

answers are desired. Repeated calls with new specified t values are made as

desired. The method flag includes a choice between stiff and nonstiff formulas

(Adams formulas are used for nonstiff problems), and it tells whether or not

J is being supplied. For GEARS, it also indicates whether structure infor-

mation about the Jacobian will be supplied by the user or computed by GEARS.

The only other difference between the user interfaces of GEAR and GEARS is

that the latter includes in the call sequence a work array (actually an integer

and real copy of the same work space) which is to be devoted to sparse matrix

computations. Determining the required length of this array may require

some experimentation.

-.
.-

3. Software Aspects of Sparse ODE’s

As noted in the Introduction, programs such as GEAR have been quite

successful in solving stiff ODE’S that are small and dense or moderately

large and banded. For certain applications, however, it is essential to

more fully exploit the sparseness of the system of ODE’S in order to reduce

storage or computation time. This section examines several of the key tech-

niques in GEARS that would probably be useful in any package that does this.
●. .

There were two basic objectives in designing GEARS: first, retention

of the properties of GEAR as an ODE solver while enhancing its efficiency ● “n

for sparse systems, and second, provision of a user interface allowing for

various degrees of user knowledge about sparse matrix techniques. The

first goal is necessary in order to allow the simple substitution of GFARS

-5-

.-
‘.

for GEAR. It also facilitates comparisons that reflect on the utility of

exploiting sparseness for any particular problem. The second goal is

desirable in order to cater to the needs of the large variety of anti-

cipated users, ranging from numerical analysts expert in sparse matrix

handling to scientists and engineers wishing to treat GEARS as a “black

box”.

Two of the primary techniques in GEARS that lead to enhanced effi-

ciency are the use of a special method to compute finite difference

approximations to J (when needed) and the use of the Yale Sparse Matrix

Package (YSMP) to solve the linear systems in (5). The method for

computing the finite difference approximations is due to Curtis, Powell,

and Reid [7]. It consists in grouping the components of y into NGP groups

such that all the components in a group can be varied simultaneously in

computing a difference quotient. Thus only NGP evaluations of f are required

to approximate J, instead of the N evaluations used by GEAR. (Usually

NGP << N.)

The linear systems in (5) are sparse and usually nonsymmetric.

In general, it should be anticipated that partial pivoting will be required

when Gaussian elimination is used to factor P into the product LU.

However, experience has shown that pivoting is only rarely required in

certain applications [8], and, in any case, if the factorization process

should fail, a change in the stepsize h will usually improve matters because

of the form of P. Since substantial cost is associated with the incorpora-

tion of partial pivoting into a subroutine for sparse Gaussian elimination,

we have chosen to initially include in GEARS only a package (YSMP) that does

no pivoting for numerical stability.

YSMP [3,4] is a set of Fortran subroutines designed to solve sparse

. , linear systems by Gaussian elimination. The package has received extensive

.
use and appears to be quite efficient. The reader is referred to [9] for

m.
. a discussion (for symmetric systems) of the relative merits of sparse codes

such as YSMP and band codes such as that included in GEARB, but we note that

-6-

there appear to be many situations in which the sparse code is substantially

more efficient.

GEARS uses two modules from YSMP to solve the systems (5): ODRV

(slightly modified) to select a permutation matrix Q such that QPQT canbe

efficiently factored (m), and CDRV to actually factor QPQT and solve for Ay .
m

-,
.“

.

If the matrix QPQ’ has no factorization for the chosen Q (a possibility

since ODRV ignores stability in choosing Q), GEARS reduces h (to make P nearer

to the identity matrix) and retries the step. In our experience, this has

rarely happened.

We now turn to the user interface for GEARS. Among other things,

the user of a code based on GEAR may choose to provide the true Jacobian

matrix J by including a subroutine to compute it. In the case of GEAR or

GEARB it is not difficult for a typical user to compute J and store it in

an appropriate manner. In the case of GEARS, however, many users may find

it inconvenient to compute J in the form that is most convenient for in-

ternal use. As a result, GEARS does not require the user to compute all

of J at once. Instead, the user provides a subroutine (PDS) that computes

a single column of J and returns it as a vector of length N. (Only the

nonzero components of the column need be computed and stored.) GEARS uses

structure information about the locations of nonzeroes in J to store the

output of PDS in an appropriate form. In addition to simplicity for the

user, this scheme has the advantage of being completely independent of the

internal data structure for J.

The structure information just mentioned is required whether the

user provides PDS or depends on GEARS to compute J with difference quotients.

It can be input by the user in two integer arrays IA and JA, or alternatively,

it can be computed internally by GEARS (using several evaluations of f or .
calls to PDS). The former choice is certainly more efficient, but it re-

,-
%

quires more expertise on the part of the user. The latter choice is expensive,

but it is usually done only once per problem, so its simplicity may outweigh
*b.

its cost. Whichever option is chosen initially, the user may later signal

GEARS (during the integration) either to accept new arrays IA and JA or to

recompute the structure information.

-&

-7-

4. An Example Problem

. To illustrate the

the GEAR family of codes,

potential benefits of GEARS over other members of

consider the parabolic differential equation

= V*(D(eU)Vu) +D(e”)(u~+u~).
‘t (7)

This equation arises after the variable transformation u = !2na from the‘a
+

equation

a = VO(D(a)Va)
t (8)

that can be used to model the impurity atom distribution near the edge of a

diffusion mask in the fabrication process for narrow-channel MOS transistors

[10]. In both equations, D(z) is defined by

D(z) = Do
[1+/ I[l+&ll+13(z+22+1)

(9)

where D
o
and $ are physical constants. For the problm studied here,

‘o
= 1 and i3= 100.

The equation (7) was solved on the rectangular domain [-17,0]xI-17,17].

Appropriate boundary conditions for a constant-surface-concentrationmodel

are

u = h 20 x= o, 05y517

u = 2n(2x10-4) x = -17, -17:y517

u -17<X50, y=-17= !tn(2x10-4) _

u= o x= o, -17<y50
x —

o -17<X<0, y=17
‘Y = ——

(10)

The initial condition chosen had u = !4n(2x10-4)on the interior of the domain
a.,
. and satisfied the boundary conditions (10). The integration was carried out

between times t=O and t=l.
*4. To solve (7) numerically, the method of lines was used on a regular

rectangular spatial mesh with equal spacing in the x and y directions.

The righthand side of (7) was discretized using central differences for the
2 2

self-adjoint term and upstream differences for u and u . The resulting
x Y

discretization is first order accurate and yields the system of ODE’s

dyldt = f(y,t), (11)

-—

-8-

.

where the components of y correspond to approximations to u at the mesh

nodes, and an evaluation of f is simply an evaluation of the difference

approximation to the righthand side of (7) (subject to (10)) for a given

set of nodal values.

The discrete problem was solved for mesh spacings of 17/10 and 17/19,

giving systems of 189 and 702 ODE’s, respectively. The corresponding Jacobian

matrices have half-bandwidths of 10 and 19, respectively. Both GEARB and
-5

GEARS were used with an error tolerance of 10 and an initial step size
-6

of 10 . Both codes obtained Jacobian matrices using difference quotients.

The computed solutions of the system (11) were identical.

The results are reported in Table 1. In the experiments, GEARS was

run both with structure information supplied (denoted by GEARS) and with

structure information computed using N+l function evaluations (denoted by

GEARS*). The statistics given in the table are the number of integration

steps (NST), number of function evaluations (NFE> number of Jacobian evaluations

(NJE), number of function evaluations per Jacobian evaluation (NGP), number of

function evaluations used in Jacobian or structure evaluation (NFJ), time in

seconds on a CDC7600 using the CHAT compiler (TIME), and the number of words of

method-dependent

required by both

storage (MDS). (In addition, a certain amount of storage is

GEARB and GEARS. For N = 702, this is approximately 8,000 words.)

TABLE 1

N CODE NST NFE NJE NGP NFJ TIME MDs

GEARB 101 386 10 21 210 6.04 5,859

189 GEARS 101 246 10 7 70 4.64 7,935

GEARS* 101 436 10 7 172 6.75 7,935

GEARB 193 938 15 39 585 59.85 40,716

702 GEARS 193 458 15 7 105 36.97 35,265

GEARS* 193 1,161 15 7 808 66.04 35,265

-,
J“

8 .*

-9.-

The results shown in Table 1 indicate that GEARS can be substantially

more efficient that GEARB. However, two comments are required to place the

results in perspective. First, most of the time differences are due to the.

number of function evaluations required, although for these problems, GEARS

,*m seems to be 10-15% faster than GEARB excluding function evaluations. (This

problem is well-suited to GEARB since a rectangular mesh is used.) Second, the
w

J problem is not very stiff for the mesh spacings used; a finer spatial mesh or

a longer time interval would yield a stiffer system of OD& and enhance the

advantage of GEARS. (The cost of structure computation in GEARS would also

become relatively less important.)

5. Extensions

GEARS should be viewed not as the end of a line of research, but only as

a substantial first step. Numerous issues remain to be investigated, and sub-

stantial changes (hopefully improvements) are certain. To indicate the direction

of the work, some of these are listed here.

i) The question of partial pivoting must be examined in more detail.

For those applications requiring pivoting, GEARS could be extended

to include an appropriate sparse matrix package and a means of switching

between it and YSMP.

ii) Currently, GEARS re-evaluates J whenever P is re-evaluated, even if only

the order or step-size has changed. While costly, this saves the storage

that would be required to save both P and J internally. Recently, we

have experimented with techniques that recover J from P, and thereby avoid

the extra evaluations of J. We expect to incorporate such a technique

into GEARS in the near future.

iii) GEARS only solves explicit systems of ODE*S. Implicit systems of the form

A+ = f(y,t)

arise

-, GEARS

.“
iv) There

:> GEARS

naturally in certain applications of the method of lines and elsewhere.

could be extended to handle such systems.

are several drawbacks (from an ODE point of view) to the current

interface. A new interface could be designed to provide more flex-

ibility to the user in

ODE solution process.

terms of error control and other aspects of the

-1o-

V) Several recently proposed sparse matrix techniques could be adapted

for GEARS to allow the sparseness of

fully exploited. One idea suggested

small components of J. This or some

References

the system of ODE’s to be more

by Carver [11] involves ignoring ?

similar idea may be useful in GEARS.

:’

*
[1] A.C. Hindntarsh,GEAR: Ordinary Differential Equation System Solver, 1

Lawrence Livermore Laboratory Report UCID-30001, Rev. 3, December 1974.

[2] A.C. Hindmarsh, GEARB: Solution of,Ordinary Differential Equations

Having Banded Jacobian, LLL Report UCID-30059, Rev. 2, June 1977.

[3] S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman, Yale

Sparse Matrix Package: I. The Symmetric Codes, Research Report No. 112,

Dept. of Computer Sciences, Yale University, 1977.

[4] S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sher=n, yale

Sparse Matrix Package: .11. The Nonsymmetric Codes, Research Report

No. 114, Dept. of Computer Sciences, Yale University, 1977.

[5] J.W. Spellmann and A.C. Hindmarsh, GEARS: Solution of Ordinary

Differential Equations Having a Sparse Jacobian Matrix, LLL Report

UCID-30116, August 1975.

[6] A.H. Sherman, Yale Sparse Matrix Package User’s Guide, LLL Report

UCID-30114, August 1975.

[7] A.R. Curtis, M.J.D. Powell, and J.K. Reid, On the Estimation of

Sparse Jacobian Matrices, J. Inst. Math. Applic. ~, (1974), pp. 117-119.

[8] A.R. Curtis. Private communication.

[9] D.J. Rose, A.H. Sherman, R.E. Tarjan, and G.F. Whitten, Algorithms

and Software for In-Core Factorization of Sparse, Symmetric, Positive-

Definite Matrices, Computers and Structures (1980), to appear.

[10] D.D. Warner and C.L. Wilson,
*

No-Dimensional Concentration Dependent “.

Diffusion, Bell System Tech. ~., 5Q (1980), pp. 1-41.

[11] M. Carver.
%“

Private communication.
.

NOTICE

Referencetoacompanyorproduct
“This report was prepared as an account of work
sponsored by the United States Government.

name does not implyapproval or Neither the United Statesnor the United States
,.. Department of Energy, nor any of their employees,

“?e productby norany of their contractors. subcontractors, or
.,SW w.. . ?-. ”.., -. ----

U.S.Department ofE.,,=,5Y,~,,,*

... ...-= ----
recommenaauon or m
thi= I [nivwcitv nf Californiaorthe their employees, makes any warranty, express or

c..-..-.., *A tha implied, or assumes any legal liability or respon-
sibility for the accuracy, completeness or

exclusion of others that may be usefulness of any information, apparatus, product
or process disclosed, or represents that its use

suitable. would not infringe privately-owned rights.”

